

Preservation

- Agents that prevent the growth of micro-organisms in medicinal products.
- Preparations that are most susceptible to microbial growth are most aqueous preparations including: syrups, suspensions, emulsions, and semisolids particularly creams.
- Preparations containing alcohol may not require preservatives.
 - Most alcoholic preparartions
 - Certain hydroalcoholic preparations
 - Generally, 15% V/V alcohol will prevent microbial growth in acid media and 18% V/V in alkaline media.
 - **♦** Spirits, tinctures, elixirs.

E2

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Preservative selection consideration

- The preservative prevents the growth of the type of m.o. considered the most likely contaminants of the preparation.
- The preservative is soluble enough in water.
- It does not affect on safety or causes any discomfort to the patient.

Preservative selection consideration

- Stable with time.
- Does not interact with other ingredients.
- Does not interact with the container.
- Undissociated portion of the preservative in the pH of the preparation is the only portion effective against m.o.
 - The preservative selected must be largely undissociated at the pH of the formulation being prepared.

54

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Preservative selection consideration

- •M.o. include molds, yeasts, and bacteria.
 - Bacteria generally favors a slightly alkaline medium
 - Molds and yeasts favor an acid medium.
- •Few m.o. can grow below pH 3 or above pH 9.
- Most aqueous pharmaceutical preparations are within the favorable pH range.
 - Therefore must be protected against microbial arowth.

Preservative selection consideration

- Acidic preservatives like benzoic, boric, and sorbic acids are more undissociated and thus more effective in acidic medium.
- Alkaline preservatives are less effective in acid or neutral media and more effective in alkaline media.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Preservative

- •The FDA recommends that:
 - Using the lowest effective concentration of an antimicrobial preservative
 - It should be demonstrated to be effective by an antimicrobial preservative effectiveness test.
 - The concentration used should be validated in terms of efficacy and safety, with the effectiveness confirmed to last throughout the intended shelf life of the product

57

Mode of action of preservatives

- Preservatives interfere with microbial:
 - growth,
 - · multiplication, and
 - metabolism
- 1. Modification of cell membrane permeability
- 2. Lysis and cytoplasmic leakage
- 3. Irreversible coagulation of cytoplasmic constituents
- 4. Inhibition of cellular metabolism
- 5. Oxidation of cellular constituents
- 6. Hydrolysis

58

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Examples

- benzoic acid (0.1% to 0.2%),
- sodium benzoate (0.1% to 0.2%),
- alcohol (15% to 20%),
- phenol (0.1% to 0.5%),
- cresol (0.1% to 0.5%),
- phenylmercuric nitrate and acetate (0.002% to 0.01%),
- chlorobutanol (0.5%),
- benzalkonium chloride (0.002% to 0.01%),
- Combinations of methylparaben and propylparaben (0.1% to 0.2%), the latter being especially good against fungus.
- The required proportion varies with the pH, dissociation, and other factors already indicated as well with the presence of other formulative ingredients with inherent preservative capabilities.

Air displacement excipients

- Some drugs might affected by air
 - Air contains oxygen
 - Liquid filling under nitrogen is an effective measure for protecting the drug against oxidation.

COLLEGE OF PHARMACY UNIVERSITY OF BASRAH

Acidifying agents

- Used in liquid preparations to provide acidic medium for product stability
- Eaxmples:
 - Citric acid
 - Acetic acid
 - Fumaric acid
 - Hydrochloric acid

61